282 research outputs found

    Magnetization reversal in the anisotropy-dominated regime using time-dependent magnetic fields

    Full text link
    We study magnetization reversal using various r.f. magnetic pulses. We show numerically that switching is possible with simple sinusoidal pulses; however the optimum approach is to use a frequency-swept (chirped) r.f. magnetic pulse, the shape of which can be derived analytically. Switching times of the order of nanoseconds can be achieved with relatively small r.f. fields, independent of the anisotropy's strength

    Bragg scattering of Cooper pairs in an ultra-cold Fermi gas

    Full text link
    We present a theoretical treatment of Bragg scattering of a degenerate Fermi gas in the weakly interacting BCS regime. Our numerical calculations predict correlated scattering of Cooper pairs into a spherical shell in momentum space. The scattered shell of correlated atoms is centered at half the usual Bragg momentum transfer, and can be clearly distinguished from atoms scattered by the usual single-particle Bragg mechanism. We develop an analytic model that explains key features of the correlated-pair Bragg scattering, and determine the dependence of this scattering on the initial pair correlations in the gas.Comment: Manuscript substantially revised. Version 2 contains a more detailed discussion of the collisional interaction used in our theory, and is based on three-dimensional solution

    Perfect coupling of light to surface plasmons with ultra-narrow linewidths

    Full text link
    We examine the coupling of electromagnetic waves incident normal to a thin silver film that forms an oscillatory grating embedded between two otherwise uniform, semi-infinite half spaces. Two grating structures are considered, in one of which the mid point of the Ag film remains fixed whereas the thickness varies sinusoidally, while in the other the mid point oscillates sinusoidally whereas the film thicknesses remains fixed. On reducing the light wavelength from the long wavelength limit, we encounter signatures in the transmission, T, and reflection, R, coefficients associated with: i) the short-range surface plasmon mode, ii) the long-range surface plasmon mode, and iii) electromagnetic diffraction tangent to the grating. The first two features can be regarded as generalized (plasmon) Wood's anomalies whereas the third is the first-order conventional (electromagnetic) Wood's anomaly. The energy density at the film surface is enhanced for wavelengths corresponding to these three anomalies, particularly for the long range plasmon mode in thin films. When exciting the silver film with a pair of waves incident from opposite directions, we find that by adjusting the grating oscillation amplitude and fixing the relative phase of the incoming waves to be even or odd, T+R can be made to vanish for one or the other of the plasmon modes; this corresponds to perfect coupling (impedance matching in the language of electrical engineering) between the incoming light and these modes.Comment: 13 pages, 5 figures. accepted J. Chem. Phy

    Switching spin valves using r.f. currents

    Full text link
    We show that magnetization reversal in spin-injection devices can be significantly faster when using a chirped r.f. rather than d.c current pulse. Alternatively one can use a simple sinusoidal r.f. pulse or an optimized series of alternating, equal-amplitude, square pulses of varying width (a digitized approximation to a chirped r.f. pulse) to produce switching using much smaller currents than with a d.c. pulse.Comment: please disregard the previous versio
    • …
    corecore